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Abstract—In the advanced metering infrastructure (AMI)
network of the smart power grid, smart meters (SMs) are
installed at the customers’ premises to report their fine-grained
power consumption readings to the utility for billing and load
monitoring purposes. Moreover, to create a clean power system,
customers install solar panels on their rooftops to generate power
and sell it to the utility. However, malicious customers may
compromise their SMs to report false readings to achieve financial
gains illegally. Reporting false readings not only causes hefty
financial losses to the utility but may also degrade the grid
performance because the reported readings are used for energy
management. This paper is the first work that investigates this
problem in the net-metering system, in which one SM is used to
report the difference between the power consumed and the power
generated. First, we prepare a benign dataset for the net-metering
system by processing a real power consumption and generation
dataset. Then, we propose a new set of attacks tailored for the
net-metering system to create malicious dataset. After that, we
analyze the data and we found time correlations between the
net meter readings and correlations between the readings and
relevant data obtained from trustworthy sources such as the
solar irradiance and temperature. Based on the data analysis, we
propose a general multi-data-source deep hybrid learning-based
detector to identify the false-reading attacks. Our detector is
trained on net meter readings of all customers besides data from
the trustworthy sources to enhance the detector performance by
learning the correlations between them. The rationale here is
that although an attacker can report false readings, he cannot
manipulate the solar irradiance and temperature values because
they are beyond his control. Extensive experiments have been
conducted, and the results indicate that our detector can identify
the false-reading attacks with high detection rate and low false
alarm.

Index Terms—Security, False-reading attacks, Net-metering
system, and Smart power grid.

I. INTRODUCTION

Smart power grid is a new vision that aims to upgrade the
traditional power grid to create a clean, efficient and resilient
system. Advanced metering infrastructure (AMI) is one of the
main components of the smart power grid, where smart meters

Corresponding author: Mahmoud M. Badr.
M. M. Badr, M. I. Ibrahem, and M. Mahmoud are with the Department of

Electrical and Computer Engineering, Tennessee Tech. University, Cookeville,
TN 38505 USA (e-mail: mmbadr42@tntech.edu; miibrahem42@tntech.edu;
mmahmoud@tntech.edu).

M. M. Fouda is with the Department of Electrical and Computer Engineer-
ing, College of Science and Engineering, Idaho State University, Pocatello,
ID 83209, USA (e-mail: mfouda@ieee.org).

W. Alasmary is with the Department of Computer Engineering, Umm Al-
Qura University, Saudi Arabia (e-mail: wsasmary@uqu.edu.sa).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

(SMs) are installed at the customers’ premises to periodically
report fine-grained power consumption readings to the utility
for billing and load monitoring purposes [1]. Moreover, to
create a clean system, the smart power grid aims to generate
more electricity from renewable resources, e.g., solar panels,
to reduce the emissions of greenhouse gases [2]. To do that,
solar panels are installed on the rooftops of the customers to
generate power and sell it to the utility. Therefore, in the smart
grid, some houses may have renewable energy generators and
other houses do not generate power. In the latter case, there is
only one metering system adopted by the utilities, called the
consumption metering system, where each house is equipped
with one SM to measure the power consumption readings and
send them to the utility. While in case that houses generate
power, there are two metering systems adopted by the utilities,
namely, the feed-in tariff (FIT) and the net-metering, to enable
the customers to sell their generated power [2], [3].

In the FIT system, the tariff of the power consumed by the
customers is different from the tariff of the power generated
by them [2], [3]. In this case, the customer’s home is equipped
with two SMs; a consumption meter which is used for report-
ing the power consumption readings and a generation meter
which is used for reporting the power generation readings. On
the other hand, in the net-metering system, the tariff of the
power sold by the customers is similar to the tariff of the power
consumed by them [4]. Hence, the excess generated power
can be injected directly to the grid, and thus, the customer
does not need to purchase an expensive solar battery. This can
significantly reduce the cost of the solar generation system,
which motivates the customers to install it. Also, in the net-
metering system, only one SM, called net meter, is used to
report readings which represent the difference between the
power consumed and the power generated by the customer
in a small time period [3]. Therefore, the reading is positive
if the consumed power is more than the generated power,
and it is negative if the generated power is more than the
consumed power. The customer is charged for the positive
readings and rewarded for the negative readings. Given the
advantages of the net-metering system, it is currently adopted
in many countries worldwide including USA, Italy, and Brazil
[4].

In these metering systems, malicious customers can report
false readings to the utility to make profit illegally. Specifically,
in the consumption metering system, malicious customers can
report lower readings to reduce their bills [1], and in the
FIT system, malicious customers can report higher generation
readings to achieve higher financial profit [2]. Moreover,
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malicious customers in the net metering can report lower
readings when the consumed power is more than the generated
power and report higher readings when the generated power
is more than the consumed power.

Reporting false consumption readings for electricity theft,
which is a contemporary problem that faces the utilities all
over the world, causes hefty financial losses. According to [5],
the world annual losses due to electricity theft were estimated
by 89.3 billion dollars. For instance, the United States and
Puerto Rico lose about 6 billion and 400 million dollars every
year, respectively [1], [2]. Moreover, the false readings may
degrade the grid performance because they are used to make
decisions regarding energy management [6]. To detect the
false-reading attacks (i.e, false reported readings by malicious
customers) in the AMI network, various solutions have been
proposed in the literature [1]–[3], [6]–[10]. However, all the
existing works study only the consumption metering [1], [6]–
[10] and FIT systems [2], [3], and none of the existing works
have studied the problem in the net-metering system.

Detection of false-reading attacks in the net-metering sys-
tem is different from the other metering systems for the fol-
lowing reasons. In case of the consumption metering system,
the detector can be trained on the consumption pattern of the
customer, which depends on his lifestyle, to detect the false
readings. Similarly, in the FIT system, the detector can be
trained on the generation pattern of the customer’s solar panels
to detect the false readings. However, the problem is more
complicated in case of the net-metering system because the net
meter readings depend on the lifestyle, the solar irradiance, and
the generation capacity of the solar panels, i.e., the readings
simultaneously include consumption and generation patterns.
This means that a new detection approach that considers both
the consumption and the generation patterns is needed to be
able to detect the false-reading attacks in the net-metering
system. Furthermore, new attacks tailored for the net-metering
system should be investigated for the following reason. The at-
tacks against the consumption metering system target reducing
the readings while trying to mimic the consumption pattern,
and the attacks against the FIT system target increasing the
generation readings while trying to mimic the generation pat-
tern. However, in the net-metering system, the attacker needs
to consider both the consumption and generation patterns in
computing the false readings while achieving financial gains.

In this paper, we investigate the detection of false-reading
attacks in the net-metering system using deep learning. Our
methodology consists of four steps: dataset preparation, data
analysis, detector design, and performance evaluation. To pre-
pare our dataset, the real power consumption and generation
dataset of Ausgrid [11] is used to derive benign samples of
true net meter readings. Then, a set of attacks that mimic
the behavior of malicious customers is proposed to create
malicious samples of false readings. The dataset is extended
by including weather information collected from SOLCAST
website [12]. After that, the data is analyzed, and time correla-
tions are found between the consecutive readings of the benign
samples. Moreover, correlations are found between the true net
meter readings and the relevant data from trustworthy sources
such as the solar irradiance and temperature. Based on the data

analysis, a general multi-data-source hybrid deep learning-
based detector is proposed to identify the false-reading attacks.

Our general detector can be applied for all customers, and it
has a hybrid architecture that includes a convolutional neural
network (CNN) and a gated recurrent unit neural network
(GRU). This hybrid architecture is used so that the CNN layers
extract the features from the input net meter readings while
the GRU layers capture the correlation between the extracted
features. Moreover, our detector is trained on the net meter
readings besides the relevant data from trustworthy sources,
such as the solar irradiance and temperature, to enhance the
detection performance by learning the correlations between
them. The rationale here is that although an attacker can report
false readings, he cannot manipulate the solar irradiance and
temperature values because they are beyond his control. Thus,
the true data from the trustworthy sources can help the detector
to identify the false-reading attacks. The simulation results of
our experiments indicate that our detector can accurately detect
the false reading attacks and achieve a higher performance than
a single-data-source detector trained only on the net meter
readings.

To the best of our knowledge, this is the first work that
investigates the detection of false-reading attacks in the net-
metering system, and our main contributions can be summa-
rized as follows.

• We prepare a benign dataset for the net-metering system
by processing the Ausgrid dataset [11] and exploiting
the weather information available on SOLCAST website
[12]. We also propose a set of attacks tailored for the
net metering system to mimic the behavior of malicious
customers to create a malicious dataset.

• We analyzed the dataset and found time correlations
between the net meter readings and correlations between
the readings and relevant data obtained from trustwor-
thy sources. Based on this data analysis, we propose a
multi-data-source hybrid deep learning-based detector to
identify false-reading attacks in the net metering system.
Our detector uses the net meter readings with relevant
data obtained from trustworthy sources to enhance the
performance by learning the correlations between the
readings and the other data. These data include the solar
irradiance, the temperature, the solar panel capacity, the
day, and the season.

• We conduct extensive experiments to evaluate the perfor-
mance of our multi-data-source detector, and the results
indicate that our detector can accurately detect the false-
reading attacks. Furthermore, our detector achieves higher
performance (i.e., higher detection rate and lower false
alarm) compared to a single-data-source detector trained
only on the net meter readings.

The rest of the paper is organized as follows. In Section
II, we discuss the existing works in the literature that address
detecting false-reading attacks in the AMI network. Then, the
network and threat models are discussed in Section III. Section
IV presents the preliminaries used in our work. The dataset
created for training our detector is presented in Section V. Our
detector designed to identify false-reading attacks is presented
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in Section VI. Next, performance evaluation of our detector
is discussed in Section VII. Finally, the paper is concluded in
Section VIII.

II. RELATED WORK

In this section, we discuss the research works that address
detecting false-reading attacks in the AMI network of the
smart power grid using machine learning approaches. These
works either consider the consumption metering system [1],
[6]–[10] or the FIT system [2], [3]. Then, we will discuss the
limitations and research gap.

A. The Consumption Metering System

Various solutions have been proposed in the literature to de-
tect false-reading attacks in the consumption metering system.
While some of these solutions use shallow detectors [1], [6],
[7], other solutions use deep learning-based detectors [8]–[10].

1) Shallow Detectors: Jokar et. al. [1] and Ford et. al. [7]
have proposed false-reading attacks detector using the Irish
dataset [13] that contains benign samples of real consumption
readings. A set of attacks have been proposed in [1] to
create synthetic malicious samples. Then, two support vector
machine (SVM)-based detectors are used for each customer;
the first detector is a one-class SVM trained only on the benign
samples, and the other is a multi-class SVM trained on both the
benign and malicious samples. The results in [1] indicate that
the multi-class SVM gives superior performance than the one-
class SVM. Unlike [1] that trains customer-specific detectors,
i.e., a detector for each customer, the detector in [7] is general
so that it can be applied for all customers. The detector is
based on an artificial neural network (NN) with single hidden
layer. It uses the historical consumption readings of customers
to predict the future consumption values which are compared
with the reported consumption values using the root mean
squared error. If this error exceeds a threshold, the customer
is assumed malicious, otherwise he is honest.

Buzau et. al. [6] have trained a general detector using the
dataset of Endesa [6], [10], the largest electricity utility in
Spain, that contains both benign and malicious samples. To
enhance the detection of false-reading attacks, some informa-
tion in addition to the consumption readings are taken into
account such as the geographical locations of the customers
and the technological characteristics of the SMs. The detector
in [6] uses extreme gradient boosted trees (XGBoost), and the
results indicate that the XGBoost-based detector outperforms
the other detectors based on SVM, logistic regression, and
K-nearest neighbors.

2) Deep Learning-Based Detectors: There are detectors
that use deep learning to identify the false-reading attacks [8]–
[10]. Unlike shallow detectors which need feature extraction
techniques to successfully capture the behavior of the input
data, the deep learning-based detectors can automatically
extract these features through their deep layers. A synthetic
dataset is used in [8] to train different types of deep learning-
based general detectors using CNN, long short-term memory
network (LSTM), and Stacked Autoencoder as well as shallow
detectors using decision tree (DT), random forest (RF), and

shallow NN. The results indicate that deep learning-based
detectors outperform the shallow detectors, while the CNN-
based detector achieves the highest performance among all
detectors.

Zheng et. al. [9] have trained a general detector using
the state grid corporation of China (SGCC) dataset [14] that
contains both benign and malicious samples to detect false-
reading attacks. The detector uses a deep learning architecture
which includes both multi-layer perceptron (MLP) and CNN,
and the results indicate that the proposed detector outperforms
shallow, MLP-based, and CNN-based detectors. Buzau et. al.
[10] have used the Endesa dataset to train a general detector.
The proposed detector uses a deep learning architecture which
includes an LSTM module and an MLP module. Sequen-
tial data (e.g., daily average power consumption) and non-
sequential data (e.g., the SM model, the location, and the
contracted power) have been used for detecting the false-
reading attacks. The results indicate that the detection accuracy
of the proposed detector is better than that of [9].

B. The FIT System
A few works in the literature have addressed detecting false-

reading attacks in the FIT system [2], [3]. Krishna et. al.
[2] have proposed different approaches to design customer-
specific anomaly detectors based on the auto-regressive in-
tegrated moving average (ARIMA) and the Kullback-Leibler
divergence (KLD) to detect false-reading attacks in the gener-
ation domain of the FIT system. The proposed detectors have
been trained only on the benign samples of various datasets
including the Ausgrid dataset [11]. Krishna et. al. [2] have
proposed a set of attacks, that can maximize the financial
profit of the attacker by reporting false readings, to evaluate the
performance of the proposed detectors. The lower the financial
profit of the attacker, the more robust the detector against
false-reading attacks. Unlike [2] that trains customer-specific
detectors, Ismail et. al. [3] have trained a general detector
using a synthetic dataset. A set of attacks has been proposed
to generate malicious samples from the benign samples of
the synthetic dataset. Unlike the detectors in [2] which are
trained on benign samples only, the detector in [3] is trained
on both benign and malicious samples. The proposed detector
has a deep learning architecture, and the results indicate that
the proposed detector achieves a higher performance than the
detectors in [2].

C. Limitations and Research Gap
As discussed in the previous two subsections, all the existing

works consider only the consumption metering and FIT sys-
tems, and detecting false-reading attacks in the net-metering
system has not been addressed. The net-metering system is a
practical system that is currently adopted in many countries
including USA, Italy, and Brazil [4]. Thus, this paper tries to
fill the research gap by investigating a deep learning-based
detector to detect false-reading attacks in the net-metering
system.

Detection of false-reading attacks in the net-metering sys-
tem is different from the other metering systems for the fol-
lowing reasons. In case of the consumption metering system,
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Service panel
Net meter

Customer side Utility side

Power grid

Control centerPower flow

Data  flow

Rooftop solar panels

Fig. 1: The net-metering system model.

the detector can be trained on the consumption pattern of the
customer, which depends on his lifestyle, to detect the false
readings. Similarly, in the FIT system, the detector can be
trained on the generation pattern of the customer’s solar panels
to detect the false readings. However, the problem is more
complicated in case of the net-metering system because the net
meter readings depend on the lifestyle, the solar irradiance, and
the generation capacity of the solar panels, i.e., the readings
simultaneously include consumption and generation patterns.
This means that a new detection approach that considers both
the consumption and the generation patterns is needed to be
able to detect the false-reading attacks in the net-metering
system. What makes the problem more difficult is that to
devise a general detector that can be applied for all customers,
it needs to be trained on data from different customers who
have different lifestyle, type of solar panels, and generation
capacity.

Furthermore, new attacks tailored for the net-metering sys-
tem should be investigated for the following reasons. The at-
tacks against the consumption metering system target reducing
the readings while trying to mimic the consumption pattern,
and the attacks against the FIT system target increasing the
generation readings while trying to mimic the generation pat-
tern. However, in the net-metering system, the attacker needs
to consider both the consumption and generation patterns in
computing the false readings while achieving financial gains.
Moreover, the majority of the research works in the consump-
tion metering system have proposed simple attacks such as
reporting zero readings [1], [6]–[10] or continuously reporting
the same reading during the successive periods [1]. Also,
the research works in the FIT system have proposed simple
attacks such as reporting readings higher than the generation
capacity of the solar panels [2], [3] or reporting generation
readings higher than zero after the sunset [3]. Such attacks
can be easily detected even without using machine learning

techniques. However, in this paper, we avoid these limitations
by proposing more sophisticated attacks that consider the
generation capacity of the solar panels and try to mimic the
consumption and generation patterns.

III. SYSTEM AND THREAT MODELS

In this section, we discuss the system and threat models
considered in this paper.

A. System Model

Fig. 1 shows the different entities in our net-metering system
and the interactions between them. At the customer side, there
are solar panels installed on the rooftop of the customer’s
house. These solar panels convert the energy collected from
the sun to direct current (DC) electricity which cannot be used
directly to power the house’s appliances or injected to the grid.
Therefore, an inverter is used to convert the DC electricity to
alternating current (AC) electricity. Then, the AC electricity
flows from the inverter to the main service panel that controls
feeding the electricity to the house’s appliances. In the net-
metering system, the customer’s solar generation system is
connected to the utility’s power grid as shown in Fig. 1 so
that the excess power generated can be injected directly to
the grid through the net meter, and thus, the customer does
not need to purchase an expensive solar battery. On the other
hand, if the generated power is insufficient, the customer can
satisfy his consumption needs by drawing electricity from the
power grid through the net meter. Thus, the net meter acts
as an interface between the customer and the utility, and it is
a bidirectional meter that allows the electricity flow in either
direction.

The net meter periodically records readings, which represent
the difference between the power consumed by the house
appliances and the power generated by the solar panels.
Therefore, the reading is positive if the consumed power is
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more than the generated power, the reading is negative if the
generated power is more than the consumed power, and the
reading is zero if the consumed power is similar to the gen-
erated power. These fine-grained readings are communicated
to the utility’s control center through the AMI network via
wired communications such as power line communication or
wireless communication such as cellular communication [15].
These readings are used by the utility for billing purposes and
for demand side management (i.e, achieving a balance between
the energy demand and supply).

B. Threat Model

Given the high installation costs of the solar generation
system, customers may be keen to get as high profits as they
can from the system even by illegal ways to shorten the time
taken to compensate the paid costs. In doing so, malicious
customers may launch false-reading attacks by compromising
their net meters to report false readings to the utility to achieve
financial gains illegally. Specifically, malicious customers can
report lower readings when the consumed power is more than
the generated power (in case of positive readings) and report
higher readings when the generated power is more than the
consumed power (in case of negative readings).

SMs can be compromised to report false readings by
programming a malicious firmware and installing it in the
SM that is accessible through the ANSI optical port [2].
This port is usually secured via weak passwords and there
are some tools, such as Terminator, that are used to launch
brute force attack to guess the passwords and gain access
to the SM [2]. Moreover, recent studies have shown that
the AMI communication networks have vulnerabilities, which
can be exploited by malicious customers to launch the false-
reading attacks [16]. The false reported readings not only
cause financial losses to the utility but also can result in
wrong decisions regarding energy management. Thus, in this
paper, we propose a deep learning-based detector to analyze
the readings reported by the customers’ net meters to detect
the false-reading attacks.

IV. PRELIMINARIES

We present, in this section, a brief description of the deep
learning approaches and the popular activation functions (AFs)
that will be used in our false-reading attacks detector.

A. Deep Learning

Deep learning model is a neural network which has multiple
hidden layers. Generally, the neural network composes of
input, output, and hidden layers [17]. Deep learning is a
promising technique to many applications like face recogni-
tion [18] and using voice for age identification [19] because of
its high accuracy. In this paper, we use different deep learning
models to detect false-reading attacks in the net-metering
system. This is a classification problem which needs one of
the supervised learning methods that use a labeled dataset to
train a model. There are various types of supervised learning
models including the MLP [20], CNN [21], and recurrent
neural network (RNN) [22].

Input

layer
Hidden

layers

Output

layer

Fig. 2: Typical architecture of a feed-forward neural network
(FFN).

The aim of the training process of a model is to obtain
good values for all the model weights and biases. This can be
done by defining an objective function and using an optimizer
and labeled data samples. First, the input data goes from the
first layer in the model through the intermediate layers for a
predefined number of iterations. Then, the model’s weights
and biases are updated in each iteration in the direction
of minimizing the objective function Θ using feed-forward
and back-propagation [23]. The most widely used objective
function in the classification problems is categorical cross-
entropy C(y, ŷ), and it measures the loss between the true
distribution y and the predicted distribution ŷ, for N classes
as follows:

C(y, ŷ) = min
Θ

(−
N∑
c=1

y(c) log(ŷ(c))) (1)

In our paper, the MLP, CNN, and GRU are used to train
the false-reading attacks detector.

B. Feed-Forward Neural Network (FFN)

FFN is also called MLP [20], and it consists of three types
of layers as can be seen in Fig. 2 as follows.

• Input Layer: This is the first layer of an FFN, and it
passes the input data to the following layers through
nodes, called neurons.

• Output Layer: This is the last layer that is responsible for
determining the output (or classification) of the model.

• Hidden Layers: These are the intermediate layers between
the input and output layers. Each hidden layer composes
of a number of neurons, where each neuron uses an
activation function to transform its input values into
the output value of that neuron. Every neuron is fully
connected to the neurons of the previous layer through a
number of connections.

C. Convolutional Neural Network (CNN)

CNN is widely used in image and natural language process-
ing applications [21] because of its capability to extract the
important features and capture complex patterns in the input
data. As shown in Fig. 3, a CNN model’s architecture includes
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Convolution

layer

Input

layer

Fully 

connected

layer 

Pooling 

layer

Output

layer

Fig. 3: Typical architecture of a convolutional neural network
(CNN).

input, convolution, pooling, fully connected, and output layers.
The convolution layer has a number of filters that are used to
extract features from the input, and the pooling layer reduces
the dimensions of the convolution layer’s output. Convolution
and pooling layers are usually followed by one or more fully
connected layers that process the features extracted to be used
for prediction.

D. Gated Recurrent Unit Neural Network (GRU)

GRU is a type of RNN, which consists of hidden states
and connections between the internal units to construct a
directed graph as shown in Fig. 4. In each time step t, a
transition function takes the current time information Xt and
the previous hidden state Ht−1 to update the current hidden
state Ht as follows.

Ht = F (Xt, Ht−1) , (2)

where F is a nonlinear AF, e.g., Tanh. As can be observed
in Eq. 2, Ht−1 can be considered as a memory for previous
inputs, and thus, GRU can memorize long sequences of input
patterns. In GRU, reset and update gates are used to learn
which information is important to keep and which information
can be discarded. Therefore, GRU has the ability to capture
the correlations between the inputs. GRU is widely used
in the text generation and speech recognition and synthesis
applications [24], [25].

E. Activation Functions (AFs)

The AF is an important component in the machine learning
models since it has a major impact on the model accuracy and
convergence speed. Non-linear AFs are usually used because
they enable the model to create complex mappings between
the inputs and outputs. In the following, we explain two of
the AFs used in this paper [26].

• Rectified Linear Unit (ReLU): It uses a simple max
function to determine the output of a given input x as
follows.

ReLU(x) = max(0, x) (3)

𝐻𝑡−1

𝐻𝑡

𝐻𝑡+1

𝑋𝑡−1

𝑋𝑡

𝑋𝑡+1

𝑌𝑡−1

𝑌𝑡

𝑌𝑡+1

Fig. 4: Typical architecture of a recurrent neural network
(RNN).

• Softmax: It is commonly used in the output layer for
classification problems. For a given input vector z =
[z1, . . . , zN ] ∈ RN , the Softmax function is defined as
follows.

Softmax(zi) =
ezi∑N
j=1 e

zj
for i = {1, . . . , N}, (4)

where N is the number of classes.

V. DATASET PREPARATION

Due to the unavailability of a public dataset that contains
both benign samples (true readings) and malicious samples
(false readings) for the net metering system, we explain in
this section how we prepare the dataset used in this paper.

A. Benign Readings

In this paper, we use a publicly available dataset released by
Ausgrid, the largest distributor of electricity on Australia’s east
coast [11] to prepare our dataset. The Ausgrid dataset contains
real power consumption and generation readings for a group
of customers who are located in Sydney and regional New
South Wales, and have solar panels installed on the rooftops of
their homes. These readings are recorded for the period from
1-July-2010 to 30-June-2013. Each customer has two SMs;
one SM is used for measuring the power consumption and the
other SM is used for measuring the generated power from the
solar panels. The Ausgrid dataset contains information about
the generation capacity that indicates the maximum amount of
electricity generated from the solar panels of each customer
per hour (Cmax). The dataset also contains the location of each
customer, the category that indicates whether an SM reading
is consumption or generation, the date, and the SMs readings
at half-hour granularity.

Given the Ausgrid dataset, we apply the following opera-
tions to create our benign dataset.

• First, we follow the same methodology of [27] to remove
the anomalous measurements from the Ausgrid dataset
and produce a clean dataset. This is because some factors
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Fig. 5: The net meter readings of four randomly selected
customers.

such as the failure of the solar generation system can
cause anomalies in the dataset.

• Second, for each customer, we subtract the readings of the
generation SM from the readings of the consumption SM
to obtain net readings. These readings are equivalent to
the readings that would be recorded if the two SMs were
replaced by a single net meter of the net metering system
because the amount of drawn/injected power from/to the
utility at any time is equal to the difference between
the power consumed and the power generated by the
customer at this time.

• Third, from the half-hour granularity dataset, we have cre-
ated a dataset at one-hour granularity (i.e., 24 readings per
day) by aggregating the readings. The reason we selected
one-hour granularity is that, the lower the sampling rate,
the less likely private information about the customer can
be revealed [1]. We will also show later that our detector
can detect false-reading attacks with high detection rate
at this reduced sampling rate.

Using these operations, we have created a clean dataset for
31 customers with net meter readings at one-hour granularity
for 1096 days from 1-July-2010 to 30-June-2013. To get better
insights from this dataset, we visualize it. Data visualization
is a means that can be used to better understand the dataset
by displaying the data in a visual context so that patterns and
correlations within the data can be explored.

The net meter readings of four randomly selected customers
from the dataset are visualized in Fig. 5. We can observe
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Fig. 6: The ACFs of the time series data representing the net
meter readings of four randomly selected customers.

from the figure that the net meter readings can be positive
or negative depending on the direction of the electricity flow
between the customer and the utility. More importantly, we
can observe that the pattern of the readings of each customer
has a periodicity. For example, the shapes of the pattern of
each customer over the months (from 9 to 1) are almost the
same regardless of the year. We have the same observation
over the months (from 1 to 5) and the months (from 5 to 9).
It can also be observed that the readings are different between
the days within any period. This indicates that the readings
depend on the day and the season of the year because both the
consumption pattern and the amount of power generated by the
solar panels depend on the season and the power consumption
also depends on the day.

Moreover, to perceive the inner relation between the consec-
utive readings of the time series data representing the net meter
readings of a customer, we use the autocorrelation function
(ACF). The ACF gives the autocorrelation, i.e., the correlation
between a time series data and itself at different time lags.
Fig. 6 shows the ACFs of the readings of the same customers
selected in Fig. 5. The shaded blue areas of Fig. 6 are the 95%
confidence intervals used to determine the significance of the
autocorrelation at certain time lag. We can see that at least the
autocorrelation values at time lags of 1 and 2 for all customers
are located outside the blue shaded area, which indicates that
there is a significant correlation between each reading and its
subsequent two readings within the time series. Furthermore,
we can observe from Fig. 6 that the shape of ACF over one
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TABLE I: Proposed Attacks.

# Attack Consumption > Generation (+ve Readings) Consumption < Generation (-ve Readings)

1 Intermittent


bt ∗ TRt, ts ≤ t ≤ te

TRt, Otherwise


−max (pt ∗ Cmax, | TRt |), ts ≤ t ≤ te

TRt, Otherwise

2 α ∗ TRt −min(| β ∗ TRt |, Cmax)

3
Scaling-based

αt ∗ TRt −min(| βt ∗ TRt |, Cmax)

4

Continuous

History-based M1t ∗min(PR,TRt) −M2t ∗max(| NR |, | TRt |)

day is nearly similar to its shape over the consecutive days for
all the customers, which indicates that the net meter readings
of any customer have a daily pattern. This pattern and the
time correlations between the readings can be learned by the
detector to identify the false-reading attacks because deviation
from the pattern can be detected as anomaly.

B. False Readings

Due to the unavailability of real malicious samples for the
net metering system, we propose a set of attacks to mimic
the behavior of malicious customers. These attacks are given
in Table I. For attackers to achieve financial gains in the
net-metering system, they should reduce their reported net
readings when the power consumed is more than the power
generated (i.e., the readings are positive), and increase the
reported readings when the power consumed is less than
the power generated (i.e., the readings are negative). Further,
the proposed attacks can be classified into intermittent and
continuous. In intermittent attacks, the attacker reports false
readings at some time slots, and reports the true readings
at other time slots aiming to confuse the detector, and in
continuous attacks, the attacker reports false readings all the
time aiming to achieve high profit.

Under the intermittent attacks, we propose attack #1 in
which the attacker cheats during a random time interval starts
at ts and ends at te, and otherwise he reports the true readings.
During the cheating interval, the attacker reports a scaled-down
version of the current true reading (TRt) by a time-dependant
factor bt at the time slots of positive readings, while reports the
higher value between a large percentage (pt) of the maximum
solar generation capacity (Cmax) and the absolute value of
the current true reading (|TRt |) at the time slots of negative
readings.

Under the continuous attacks, we propose three attacks
that are either scaling-based or history-based. In the scaling-
based attacks, the attacker scales positive readings down and
scales negative readings up without considering the values
of previous readings. However, in the history-based attack,
the attacker uses the previous readings to compute the false
reading. In attack #2, the attacker cheats by always reporting a
scaled-down version of TRt by α when readings are positive,
while reporting a scaled-up version of TRt by β when readings

are negative, where 0 ≤ α < 1 and β > 1. Note that attack #2
considers that the attacker’s reported reading does not exceed
Cmax and this is denoted by −min(|β ∗TRt|, Cmax) in Table
I. Attack #3 is also a scaling-based attack, but unlike attack
#2, both the scaling down and the scaling up parameters (α
and β) are time-dependent.

Finally, attack #4 is history-based in which the attacker
cheats by reporting the minimum value between TRt and last
reported positive reading (PR) when readings are positive, and
reporting the maximum value between TRt and last reported
negative reading (NR) when readings are negative. Note that
the factors M1t and M2t in attack #4 are not scaling factors
but they act as masks to avoid reporting the same exact reading
in multiple time slots to confuse the detector; where the value
of M1t is a little bit less than one, while the value of M2t is
a little bit more than one.

C. Relevant Data from Trustworthy Sources

According to [28], the amount of power generated from
a solar panel depends on both the solar irradiance and the
temperature. Moreover, Cmax of each customer can be cal-
culated by the utility based on the number of solar panels
and their characteristics recorded in the contract between the
customer and the utility. Therefore, in addition to using the
readings reported by the net meter to detect the false-reading
attacks, relevant data from trustworthy sources, including the
solar irradiance, temperature, and Cmax, can be used by the
detector because they give indication about the power genera-
tion pattern that can be used to verify the net meter readings.
The rationale here is that although an attacker can compromise
his net meter to report false readings, he cannot manipulate
the solar irradiance, temperature, and Cmax because they are
beyond his control. Thus, the true data from the trustworthy
sources can help the detector to identify the false-reading
attacks.

The Ausgrid dataset contains Cmax of each customer but
it does not contain information about the solar irradiance and
temperature. However, they can be obtained from SOLCAST
[12] using the locations of customers given in Ausgrid. SOL-
CAST is a website that can provide the weather information
including the solar irradiance and temperature of any location
in the world at any date given the longitude and the latitude
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Fig. 7: The correlation between the net meter readings and the solar irradiance for four randomly selected customers.

of this location. Thus, given the customers’ locations, we have
found the longitudes and latitudes of these locations to obtain
the solar irradiance and temperature at these locations during
the period from 1-July-2010 to 30-June-2013 via SOLCAST.

Given the time series data representing the net meter read-
ings of a certain customer and the time series data representing
the corresponding values of the solar irradiance, the correlation
between the two time series data is visualized in Fig. 7 for
the same customers selected in Figs. 5 and 6. The scatter
plots of Fig. 7 indicate a negative correlation between the
net meter readings and the solar irradiance. This is because
the higher the irradiance, the higher the generated power by
the solar panels and thus the lower the reported net reading.
Furthermore, the correlation values given in each subplot of
Fig. 7 indicate the significance of this correlation for all
customers. Similarly, we have used a similar approach but with
using the temperature and found also a negative correlation
between the net meter readings and the temperature. Therefore,
if the readings reported by the net meter are true, there should
be correlations between the readings and the values of the
irradiance and temperature, otherwise, the detector can decide
that the reported readings are false.

D. Data Preprocessing

Given the dataset of benign net meter readings of 31
customers for 1096 days, the readings of each day are
treated as a benign sample for a total of 33,976 (31*1096)
benign samples. Then, the four proposed attacks are used
to create four malicious samples from each benign sample.
After that, our dataset of benign and malicious samples is
extended by including more data. Specifically, each sample
in the extended dataset consists of 75 values representing 24
fine-grained net meter readings, the corresponding 24 fine-
grained irradiance values, the corresponding 24 fine-grained
temperature values, Cmax, the day, and the season. The dataset
that is further divided into training and test sets with a ratio
of 2:1, respectively. After that, the training and test sets are
normalized to bring all the features’ values to a common scale
to guarantee the fair contributions of all the features towards
the classification of the detector. This step is also useful to
help the detectors that use the Gradient Descent optimization
to converge faster [29]. Finally, given that the number of
malicious samples is four times the number of benign samples,
the adaptive synthetic (ADASYN) sampling approach [30] is
used to balance the training set by over-sampling the minority
class of benign samples to avoid biasing the trained model
towards the majority class of malicious samples.
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Fig. 8: The architecture of our false-reading attacks detector.

VI. PROPOSED DETECTOR FOR FALSE-READING ATTACKS

In this section, we first discuss the rationale behind the
design of the proposed detector that detects the false-reading
attacks. Then, we describe the architecture of the proposed
detector in detail.

A. The Rationale Behind the Detector Design

Machine learning. Among the existing detectors of false-
reading attacks in the AMI network, machine learning-based
detectors outperform the other detectors that are based on state
estimation and game theory [31].
Deep learning. The machine learning-based detectors can use
either shallow classifiers such as DT, RF and SVM or deep
learning architectures such as the CNN and the RNN [8].
However, the results of recent studies have indicated that the
deep learning architectures can accurately detect false-reading
attacks in the AMI network better than the shallow classifiers
[3], [8]–[10].
General detector. The detector can be either customer-
specific, where a customized detector is trained for each cus-
tomer or a general detector that can be used for all customers.
Unlike general detectors, customer-specific detectors require
collecting historical metering readings for each customer to
train them, and thus, they cannot be used to detect false-
reading attacks launched by new customers until enough
readings are collected. Besides, customer-specific detectors are
vulnerable to contamination attacks, where a new customer

reports false readings from the beginning. If the detector is
trained on this data, the customer can continue reporting false
data without being detected [31].
Data correlation. Based on the data analysis provided in Sec-
tion V-A, there are time correlations between the consecutive
readings within the benign samples of any customer. Thus, it is
important for the detector to be able to learn these correlations
so that it can identify false-reading attacks if these correlations
are not found in the tested sample.
Multi-source data. Based on the data analysis provided in
Section V-C, there are correlations between the time-series
data representing the true net meter readings and the time-
series data obtained from trustworthy sources such as the solar
irradiance and temperature that are always true because they
are beyond the control of customers. Thus, it is good for the
detector to learn these correlations so that it can identify false-
reading attacks if these correlations are not found in the tested
sample of net meter readings and the corresponding values
of the solar irradiance and temperature. Moreover, we have
shown in Section V that data such as the day, the season,
and Cmax are also important to be considered because the net
meter readings depend on the day and the season, and Cmax
can help the detector to perceive the limits of the reported
readings.

Based on the above discussion, our detector shall have the
following characteristics. It shall be a general deep learning-
based detector trained on the data collected from all customers
to be used for any customer in the system including the
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new customers. Moreover, the deep learning architecture of
the detector needs to capture the correlation within the net
meter readings. Finally, instead of designing a single-data-
source detector that detects false-reading attacks based solely
on the readings reported by the net meter, our detector shall
be a multi-data-source detector that is trained on relevant data
from various trustworthy sources in addition to the net meter
readings to enhance the detection performance.

B. The Architecture of Our Detector
Our detector is designed to have six different types of data

(i.e., data from six different sources) as shown in Fig. 8. The
first one is the fine-grained net meter readings of one day. The
second and third input data are the fine-grained irradiance and
temperature values in the same day, respectively. The rest of
the input data are the values of Cmax, the day , and the season.
Moreover, we have designed our detector in three stages as
shown in Fig. 8 to enhance the detection performance of our
detector by considering more input data at each stage. These
stages are described as follows.

• Stage 1 considers only one type of input data, which
is the net meter readings, and it has a hybrid CNN
& GRU architecture. Since the time-series data can be
considered as 1-dimensional (1-D) data, the 1-D CNN
architecture can be used due to its capability to extract the
features from the 1-D data and hence leading to a high
detection performance. Moreover, since the time-series
data representing the net meter readings has correlations
between the consecutive readings, the GRU architecture
can be used due to its capability to capture the time
correlation in the data. Thus, we have chosen a hybrid
CNN & GRU architecture for Stage 1 so that the CNN
layers can extract the features from the input net meter
readings while the GRU layers can capture the correlation
between the extracted features.

• Stage 2 considers three input data by feeding it with the
output of Stage 1, the irradiance, and the temperature.
Stage 2 has a set of GRU layers to help the detector to
capture the correlation between the net meter readings
and the corresponding values of the irradiance and the
temperature.

• Stage 3 takes all the six input data into consideration by
feeding it with the output of Stage 2, Cmax, the day and
the season. Stage 3 has a set of dense layers to help the
detector to take complex decisions regarding the input
samples by considering the effect of important features
like Cmax, the day and the season on the output of Stage
2 that represents the net meter reading, the irradiance,
and the temperature.

In order to assess the impact of considering more input
data on the detection performance, in the evaluation we get
an output from each stage as shown in Fig. 8, but when the
detector is used by the utility, the output should be obtained
from Stage 3 only.

VII. PERFORMANCE EVALUATION

In this section, we first discuss our experimental envi-
ronment and the performance evaluation metrics. Then, we

present two experiments we have conducted to evaluate the
performance of our detector. In the first experiment, we investi-
gate various deep learning architectures to detect false-reading
attacks based solely on the readings reported by the net meters.
In the second experiment, we investigate the enhancement in
the detection performance of the detector due to considering
relevant data from trustworthy sources besides the reported
readings.

A. Experimental Setup and Evaluation Metrics
In this subsection, we describe the details of our experimen-

tal environment in terms of software and hardware, and also
the evaluation metrics used to assess the performance of our
detector.

Various Python 3 libraries are used in our work as follows.
Specifically, Pandas and Numpy are used in data preparation,
while Matplotlib [32], Statsmodels [33], and Seaborn [34] are
used in data visualization. To train the detectors and optimize
the hyper-parameters, Keras Functional API [35] and Hyperopt
[36] are used, respectively. Finally, Sklearn [37] is used for
evaluating the performance of the detector. All the experiments
are run on the high-performance cluster of the Tennessee
Technological University using two NVIDIA Tesla K80 GPUs.

The following metrics are considered to evaluate the per-
formance of our detector.

• Accuracy (ACC). It measures the percentage of the
correctly classified samples to the total number of tested
samples, and it is calculated as follows.

ACC(%) =
TP + TN

TP + TN + FP + FN
× 100,

where, TP is the number of true positive samples (i.e, the
correctly classified malicious samples), TN is the number
of true negative samples (i.e, the correctly classified
benign samples), FP is the number of false positive sam-
ples (i.e, the misclassified benign samples) and FN is the
number of false negative samples (i.e, the misclassified
malicious samples).

• Precision (PR). It measures the percentage of the cor-
rectly classified positive samples to the total number
of samples classified as positive and it is calculated as
follows.

PR(%) =
TP

TP + FP
× 100

• Detection rate (DR). It measures the percentage of the
correctly classified positive samples to the total number
of real positive samples and it is calculated as follows.

DR(%) =
TP

TP + FN
× 100

• False Alarm (FA). It measures the percentage of mis-
classified negative samples to the total number of real
negative samples and it is calculated as follows.

FA(%) =
FP

FP + TN
× 100

• Highest difference (HD). It measures the difference
between DR and FA.

HD(%) = DR(%)− FA(%)
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• F1-score (F1). It is the harmonic mean between PR and
DR and it is calculated as follows.

F1(%) =
2 ∗ PR ∗DR
PR+DR

× 100,

• Receiver operating characteristic (ROC) curve. It is a
graphical representation of the relation between TP rate
and FP rate at different decision thresholds. The higher
the area under the ROC curve (AUC-ROC), the higher
the detector performance.

• Precision-recall (P-R) curve. It is a graphical represen-
tation of the relation between PR and recall at different
decision thresholds. The higher the area under the P-R
curve (AUC-P-R), the higher the detector performance.

B. Results of Experiment 1

In this subsection, we investigate four possible deep learning
architectures, namely, MLP, GRU, CNN, and hybrid CNN &
GRU, to determine the one that provides the best performance
by considering only the readings reported by the customers’
net meters. The MLP is firstly investigated since it is the
simplest deep learning architecture, and then iw will be used
as a baseline for assessing the performance of the other deep
learning architectures. To do a fair investigation, the dataset
prepared in Section V is used to train four different detectors
with the aforementioned architectures, and Hyperopt is used to
optimize the hyper-parameters including the number of layers,
the number of units per layer, and the AF used in each layer.
The optimal hyper-parameters of these detectors are given in
Tables II-V.

Results and Discussion. Table VI gives a comparison
between the performance of the four detectors in terms of
ACC, PR, DR, FA, HD, and F1. First, we can see that
while the MLP-based detector has the lowest computational
complexity among all detectors, it achieves the lowest per-
formance. Second, it can be observed that the GRU-based
detector provides a better performance compared to the MLP-
based detector, which makes sense because the GRU layers
are capable of capturing the correlation between the inputs
and it has been proved in Section V-A that there is a temporal
correlation between the consecutive net meter readings. Third,
it can be observed that the CNN-based detector provides a bet-
ter performance compared to the MLP-based detector, which
makes sense because the CNN layers provide the detector with
a better feature extraction capability. Overall, the hybrid CNN
& GRU-based detector achieves the best performance among
all detectors because the CNN layers can extract the features
from the input readings while the GRU layers can capture the
correlation between the extracted features. Thus, the hyprid
CNN & GRU architecture is chosen to design our multi-data-
source detector.

C. Results of Experiment 2

In this subsection, we provide a comparison between the
outputs of Stages 1, 2, and 3 of our detector shown in Fig. 8
to evaluate the benefit of considering multiple data sources. To

TABLE II: The optimal hyper-parameters of the MLP-based
detector.

Hyper-parameters
Architecture

Layer Number of units AF

Input 24 Linear

Dense 128 Linear

Dense 128 Sigmoid

Dense 128 Sigmoid

Dense 256 Sigmoid

Dense 256 Relu

Dense 256 Elu

MLP

Output 2 Softmax

TABLE III: The optimal hyper-parameters of the GRU-based
detector.

Hyper-parameters
Architecture

Layer Number of units AF

Input 24 Linear

GRU 64 Sigmoid

GRU 128 Relu
GRU

Output 2 Softmax

TABLE IV: The optimal hyper-parameters of the CNN-based
detector.

Hyper-parameters
Architecture

Layer Number of units AF

Input 24 Linear

Conv1D 128 Relu

Conv1D 64 Tanh

Dense 256 Sigmoid

Dense 128 Elu

Dense 128 Tanh

Dense 256 Sigmoid

Dense 512 Relu

Dense 128 Tanh

CNN

Output 2 Softmax

TABLE V: The optimal hyper-parameters of the hybrid CNN
& GRU-based detector.

Hyper-parameters
Architecture

Layer Number of units AF

Input 24 Linear

Conv1D 64 Relu

Conv1D 32 Relu

GRU 32 Relu

CNN & GRU

Output 2 Softmax

train our detector, the dataset prepared in Section V is used as
follows. Stage 1 is trained using only the net meter readings,
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TABLE VI: Comparison between the performance of the
different detectors.

Metrics
Architecture

ACC PR DR FA HD F1

MLP 94.53 98.35 94.35 6.36 87.99 96.3

GRU 95.9 98.5 95.6 5.33 90.27 97.02

CNN 94.92 99.01 94.57 3.89 90.68 96.57

CNN & GRU 95.94 99.02 95.74 3.79 91.83 97.35

TABLE VII: The optimal hyper-parameters of the stages of
our detector.

Hyper-parameters
Stage

Layer Number of units AF

Input 24 Linear

Conv1D 64 Relu

Conv1D 64 Relu

GRU 64 Sigmoid

Stage 1

Output 2 Softmax

Input 48 Linear

GRU 128 Tanh

GRU 64 Tanh

GRU 128 Tanh

Stage 2

Output 2 Softmax

Input 3 Linear

Dense 128 Relu

Dense 128 Relu

Dense 128 Relu

Dense 64 Relu

Stage 3

Output 2 Softmax

Note: The input to Stage 2 is (48 for solar irradiance and temperature in
addition to the output of Stage 1), and the input to Stage 3 is (3 for day,

season, and Cmax in addition to the output of Stage 2).

TABLE VIII: Comparison between the performance of the
three stages of our detector.

Metrics
Stage

ACC PR DR FA HD F1

Stage 1 95.94 99.02 95.74 3.79 91.83 97.35

Stage 2 96.97 99.14 97.06 3.35 93.71 98.09

Stage 3 98.29 99.26 98.59 2.92 95.66 98.93

While Stage 2 is trained using the readings besides the solar
irradiance and temperature. Finally, Stage 3 is trained using
all data included in our dataset. In addition, Hyperopt is used
to optimize the hyper-parameters of the different stages of our
detector, and the optimal hyper-parameters are given in Table
VII.

Results and Discussion. Table VIII gives a comparison
between the performance of the three stages in terms of ACC,
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Fig. 9: Comparison between the ROC curves of Stages 1, 2,
and 3.
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Fig. 10: Comparison between the P-R curves of Stages 1, 2,
and 3.

PR, DR, FA, HD and F1. In addition, Figs. 9 and 10
visualize the difference in the performance between the three
stages using ROC curves and P-R curves, respectively. It can
be clearly concluded from the results given in Table VIII that
Stage 3 achieves the best performance among all stages. This
can also be observed in Figs. 9 and 10 because Stage 3 has
the biggest AUC-ROC and AUC-P-R, respectively among all
stages.

The superiority of Stage 2 over Stage 1 is due to the capabil-
ity of Stage 2 to successfully capture the correlations between
the net meter readings and the corresponding values of the
solar irradiance and temperature. We have discussed in Section
V-C that these correlations are significant when the reported
readings are true. Thus, if a customer maliciously manipulates
his readings, this can affect the correlations between the net
meter readings and the corresponding values of the irradiance
and temperature. For a malicious customer to fully preserve
these correlations, he has to manipulate the solar irradiance
and temperature values the same way he manipulates the
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net meter readings. However, this is impossible because the
irradiance and temperature values are not reported by him.
This means that Stage 2 has additional features that help in
differentiating between the benign and malicious samples by
checking the correlations between the net meter readings and
the corresponding values of the irradiance and temperature,
which results in higher DR, lower FA, and higher HD.

The superiority of Stage 3 over Stages 1 and 2 is because
Stage 3 takes into consideration additional important features,
which allows the detector to make a more complex classifica-
tion boundary between the benign and malicious samples. This
results in further increase in DR, decrease in FA, and increase
in HD. Finally, we can observe from Table VIII that the use
of multiple data sources improves the HD from 91.83% to
95.66% (i.e., about 4% more increase in the HD compared
to using only the net meter readings).

VIII. CONCLUSION

In this paper, detection of false-reading attacks in the net-
metering system has been investigated for the first time.
Specifically, a new set of attacks tailored for the net-metering
system has been proposed to mimic the behavior of malicious
customers, and then they have been used to create malicious
samples from a dataset of real power consumption and gen-
eration readings. Then, data analysis has been performed to
detect the time correlations between the net meter readings
and the correlations between the readings and relevant data
obtained from trustworthy sources such as the solar irradiance
and temperature. Based on the data analysis, a general multi-
data-source deep learning-based detector has been proposed
to identify the false-reading attacks. Our detector has been
trained on the net meter readings besides relevant data from
trustworthy sources to learn the correlation between them.
Extensive experiments have been conducted, and the results
indicated that our detector can accurately identify the false-
reading attacks. Moreover, the results indicate that our multi-
data-source detector achieves higher DR and lower FA than
a single-data-source detector trained only on the net meter
readings.
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